Fast Summation Techniques for Sparse Shape Functions in Tetrahedral hp-FEM

نویسندگان

  • Sven Beuchler
  • Veronika Pillwein
  • Sabine Zaglmayr
چکیده

This paper considers the hp-finite element discretization of an elliptic boundary value problem using tetrahedral elements. The discretization uses a polynomial basis in which the number of nonzero entries per row is bounded independently of the polynomial degree. The authors present an algorithm which computes the nonzero entries of the stiffness matrix in optimal complexity. The algorithm is based on sum factorization and makes use of the nonzero pattern of the stiffness matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison

We analyze and compare different techniques to set up the stiffness matrix in the hp-version of the finite element method. The emphasis is on methods for second order elliptic problems posed on meshes including triangular and tetrahedral elements. The polynomial degree may be variable. We present a generalization of the Spectral Galerkin Algorithm of [7], where the shape functions are adapted t...

متن کامل

Completions to sparse shape functions for triangular and tetrahedral p-FEM

holds for all v ∈ H Γ1(Ω). Problem (1) will be discretized by means of the hp-version of the finite element method using triangular/tetrahedral elements △s, s = 1, . . . , nel, see e.g. Schwab [1998], Solin et al. [2003]. Let △̂d, d = 2, 3 be the reference triangle (tetrahedron) and Fs : △̂ → △s be the (possibly nonlinear) isoparametric mapping to the element △s. We define the finite element spac...

متن کامل

Sparsity optimized high order finite element functions on simplices

This article reports several results on sparsity optimized basis functions for hp-FEM on triangular and tetrahedral finite element meshes obtained within the Special Research Program “Numerical and Symbolic Scientific Computing” and within the Doctoral Program “Computational Mathematics” both supported by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respectively. We giv...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013